# IIT JAM Mathematics Test Series 2023 : Differential Equations – Homogeneous Linear Equations or Cauchy-Euler Equations

Practice IIT JAM Mathematics Test Series for Free only On www.examflame.com and make your concepts more crystal and clear. In the Series of Tests for IIT JAM 2023, you will get topic-wise Tests. IIT JAM Mathematics Test Series 2023 : Differential Equations – Homogeneous Linear Equations or Cauchy-Euler Equations . These Questions are prepared as per the Latest Syllabus of IIT JAM Mathematics 2023 . Practicing mock tests/Test series, you will get an idea about how and which type of Question will ask in the Examination. It also boost your confidence and enhance your preparation level. Also Solve IIT JAM Mathematics Previous Year Question Paper. And Don’t Forget to Share with Your Friends.

## IIT JAM Mathematics Test Series 2023 : Differential Equations – Homogeneous Linear Equations or Cauchy-Euler Equations

Q1. Solve the differential Equation :

x3 (d3y/dx3) + 3x2 (d2y/dx2) + x (dy/dx) + y = log x + x

• (a) y = c1 x-1 + x1/2 [c2 cos {(√3/2) logx} + c3 sin{(√3/2) logx}] + x/2 + logx
• (b) y = c1 x + x1/2 [c2 sin {(√3/2) logx} + c3 cos {(√3/2) logx}] + x/2 + logx
• (c) y = c1 x-1 + x1/2 [c2 cos {(√3/2) logx} + c3 cos{(√3/2) logx}] + x/2 + logx
• (d) y = c1 x + x1/2 [c2 sin {(√3/2) logx} + c3 sin{(√3/2) logx}] + x/2 + logx

Q2. Solve the differential Equation :

3x2y2 – 5xy1 + 5y = sin (log x).

• (a) y = c1x + c2 x7/3 + (1/8) × [cos (log x) + cos (log x)].
• (b) y = c1x + c2 x5/3 + (1/16) × [sin (log x) + cos (log x)].
• (c) y = c1x + c2 x5/3 + (1/32) × [sin (log x) + sin (log x)].
• (d) y = c1x + c2 x7/3 + (1/2) × [sin (log x) + cos (log x)].

Q3. Solve the differential Equation :

{x2D2 – (2m – 1) xD + (m2 + n2)} y = n2 xm log x

• (a) y = xm [c1 sin (n log x) + c2 sin (n log x)] + xm log x
• (b) y = xm [c1 cos (n log x) – c2 sin (n log x)] + mx log x
• (c) y = xm [c1 cos (n log x) + c2 sin (n log x)] + xm log x
• (d) y = xm [c1 sin (n log x) – c2 sin (n log x)] + mx log x

Q4. Solve the differential Equation :

(x2D2 – xD + 4) y = cos (log x) + x sin (log x).

• (a) y = x [ c1 cos(√3 log x) – c2 sin(√3 log x)] + (1/13) [3cos(log x) + 2sin(log x)] + (x/2) 2sin(logx)
• (b) y = x [ c1 cos(√3 log x) + c2 sin(√3 log x)] + (1/13) [3cos(log x) – 2sin(log x)] + (x/2) 2sin(logx)
• (c) y = x [ c1 cos(√3 log x) – c2 sin(√3 log x)] + (1/13) [3cos(log x) + 2sin(log x)] + (x/2) 2sin(logx)
• (d) y = x [ c1 cos(√3 log x) + c2 sin(√3 log x)] + (1/13) [3cos(log x) – 2sin(log x)] + (x/2) 2sin(logx)

Q5. Solve the differential Equation :

x2 (d2y/dx2) – 2x (dy/dx) + 2y = x + x2 log x + x3

• (a) y = c1x + c2x2 – x log x + x3/2 + (x2/2) 2 [(log x)2 – 2log x].
• (b) y = c1x + c2x2 + x log x + x/2 – (x2/2) 2 [(log x)2 – 2log x].
• (c) y = c1x + c2x2 – x log x + x3/2 + (x2/2) 2 [(log x)2 + 2log x].
• (d) y = c1x + c2x2 + x log x + x/2 – (x2/2) 2 [(log x)2 + 2log x].

Q6. Solve the differential Equation :

(x4D3 + 2x3D2 – x2D + x) y = 1.

• (a) y = (c1 + c2 log x) x + c3 x + (1/4) 2 x–1 log x
• (b) y = (c1 + c2 log x) x + c3 x–1 + (1/4) 2 x–1 log x
• (c) y = (c1 – c2 log x) x + c3 x–1 + (1/4) 2 x log x
• (d) y = (c1 + c2 log x) x – c3 x + (1/4) 2 x log x

Q7. Solve the differential Equation :

x2D2y – 3x Dy + 5y = x2 sin log x

• (a) y = x2 (c1 cos log x + c2 sin log x) – (x/2) × log x cos(log x)
• (b) y = x2 (c1 cos log x – c2 sin log x) + (x2/2) × log x cos(log x)
• (c) y = x2 (c1 cos log x + c2 sin log x) – (x2/2) × log x cos(log x)
• (d)y = x2 (c1 cos log x – c2 sin log x) + (x/2) × log x cos(log x)

Q8. Solve the differential Equation :

x3 (d3y/dx3) + 2x2 (d2y/dx2) + 2y = 10(x + 1/x)

• (a) y = c1x–1 + x (c2 cos log x – c3 sin log x) + 5x – 2x–1 log x
• (b) y = c1x – x (c2 cos log x – c3 sin log x) – 5x + 2x–1 log x
• (c) y = c1x–1 + x (c2 cos log x – c3 sin log x) + 5x – 2x–1 log x
• (d) y = c1x–1 + x (c2 cos log x + c3 sin log x) + 5x + 2x–1 log x

Q9. Solve the differential Equation :

(x4D4 + 6x3D3 + 9x2D2 + 3xD + 1) y = (1 + log x)2

• (a) y = (c1 + c2log x) cos log x + (c3 + c4 log x)sin log x + (log x)2 + 2 log x – 3.
• (b) y = (c1 – c2log x) cos log x + (c3 + c4 log x)cos log x – (log x)2 + 2 log x – 3.
• (c) y = (c1 – c2log x) cos log x + (c3 + c3 log x)sin log x – (log x)2 + 2 log x – 3.
• (d) y = (c1 + c2log x) cos log x + (c3 + c4 log x)sin log x + (log x) – 2 log x – 3.

Q10. Solve the differential Equation :

(x2D2 + xD + 1) y = log x. sin log x

• (a) y = c1cos log x – c2sin log x + (1/4) log x sin(log x) + (1/4) (log x)2cos (log x)
• (b) y = c1cos log x + c2sin log x + (1/4) log x sin(log x) – (1/4) (log x)2cos (log x)
• (c) y = c1cos log x – c2sin log x + (1/4) log x sin(log x) – (1/4) (log x)2 cosx (log x)
• (d) y = c1cos log x + c1sin log x + (1/4) log x sinx (log x) – (1/4) (log x)2cos (log x)

Hope you like the test given above for IIT JAM Mathematics 2023 of  Topic – Homogeneous Linear Equations or Cauchy-Euler Equations of the Chapter Differential Equations . To get more Information about any exam, Previous Question Papers , Study Material, Book PDF, Notes etc for free, do share the post with your friends and Follow and Join us on other Platforms links are given below to get more interesting information, materials like this.

### Important Searches & Tags

• IIT JAM Mock Test Papers download
• IIT JAM test series
• Free Mock Test mathematics Mock Test
• IIT JAM Test series mathematics
• Eduncle IIT JAM Test Series
• Free Mock Test for IIT JAM Mathematics
• IIT JAM Mathematics Mock Test 2022
• IIT JAM Mock Test
• IIT JAM free Mock Test 2022
• IIT JAM Mathematics topic wise questions PDF
• IIT JAM 2022 mock Test
• Best Test Series for IIT JAM Mathematics
• Free Online Test Series for IIT JAM Mathematics
• IIT JAM mock Test 2022
• IIT JAM free Mock Test 2022
• Unacademy IIT JAM Mathematics test series
• DIPS academy Test series
• Career Endeavour Test Series IIT-JAM
• Career Endeavour Test Series pdf

close